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A model for kinetic growth is presented that allows for overhangs and arbitrary topologies of the
growing interface. Numerical studies of the model show that with a choice of the aggregation mecha-
nism equivalent to the one leading to the Kardar-Parisi-Zhang (KPZ) equation [Phys. Rev. Lett. 56, 889
(1986)], we indeed obtain the KPZ results. On changing the aggregation mechanism, different dynamics

of the growth are observed.

PACS number(s): 05.70.Ln, 68.35.Fx

The study of the dynamics of growth processes has re-
ceived considerable attention recently [1-5]. The sim-
plest of these involve physics at a local scale with the
growth occurring without any overhanging con-
figurations. A simple continuum model that is believed
to capture the physics of these processes is the Kardar-
Parisi-Zhang (KPZ) equation [3]:

o

ot
where the height 4 (x,?) is a single-valued function of the
spatial coordinate x, v is a surface-tension term that re-

laxes the interface, the A term describes normal growth,
and 7) is a Gaussian noise with zero mean and

(n(x,t)q(x",1)) =2D8%x—x")8(t —t') . 2)

=vV2h +%(Vh)2+17(x,t) , (1

The principal theme of this paper is to present a simple
local model of growth that allows for overhangs and arbi-
trary topologies of the growing interface. Our equations
consist of two parts—the deterministic term and the
noise term. The deterministic part builds in the correct

1063-651X/94/49(2)/937(4)/$06.00 49

physics and conservation law and is responsible for the
growth. The noise term causes roughening at the inter-
face. The deposition occurs on the interface, and islands
disconnected from the interface do not form.

Our model is

af(r,t) —2 oF
a " sran L (3a)
with
.t 2
F=[|-L-+i+awfp|av. (3b)

In order to maintain stability, we restrict the value of a
to be non-negative. The field f(r,z) describes a system
with two phases having one of two values f ==1 in equi-
librium, analogous to an up-down spin system. In
d =141, the vector r has components (x,z), whereas in
d =241, it is described by (x,y,z)—the z direction is
perpendicular to the initially flat interface. The interface
at time ¢ is located at r; such that f(r;,z)=0. Indeed,
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other criteria for identifying the position of the interface
such as the maximum value of |Vf| lead to the same re-
sult. The initial condition is assumed to be an equilibri-
um profile that satisfies the equation 8F /9f =0 with the
boundary conditions lim, , ,,f=x=x1. These boundary
conditions are maintained during the growth process. I
is a term allowing for growth at the interface. We have
studied two different growth mechanisms

Il=|Vf|C1+D1\« Vf ﬂ(r,t) N (4a)
L=|VfI*[Cy+Dyn(r,)] , (4b)

where 7(r,t) is a noise term that is uncorrelated in space
and time and is chosen from a Gaussian distribution of
width 1 and mean value 0. The V/f factor in both the
growth and noise terms ensures that the growth and fluc-
tuations occur at the interface—the interface corre-
sponds to the maximum value of Vf and away from the
interface, V£ =0.

We will present numerical results of the model that
suggest that with the I, growth term, the model is in the
same universality class as the KPZ equation. On the oth-
er hand, with the I, growth mechanism, the model exhib-
its different dynamical scaling behavior.

The first two terms of Eq. (3a) arise simply from the
Langevin equation for the dynamics of model B, the Ising
model with conserved magnetization [6]. The choice of
the signs of the coefficients of f2 and f* corresponds to a
temperature less than the critical temperature allowing
for the coexistence of two equilibrium phases. These first
two terms incorporate surface diffusion, inhibit the for-
mation of islands, and allow for a well-defined interface
even in the rough regime. The last term in Eq. (3a) al-
lows for growth and noise. The positive coefficients C,,
D,, C,, and D, allow for the growth and fluctuations at
the interface. We have restricted the growth and noise
terms to be operative in the region where | f| <b, where
in the majority of the runs we used b =0.9. The particu-
lar choice of b is not important as long as b is close to but
below 1 (the equilibrium value of f). Otherwise the posi-
tive contribution from the growth term, especially for
long runs, produces an unrestricted increase of f above
the equilibrium value. The I; growth mechanism gives
effectively a constant growth rate per unit length of the
interface (f =0) equal to C1f§:?:|Vf|ds =2bC,, where
the integral is performed normal to the interface, in-
dependent of the shape of the Vf contours and s, and
Smax are defined by f (s ;,)=—b and f(s,,)=b, respec-
tively. (Note that |Vf|=|df /ds|=df /ds, since f is a
monotonically increasing function from s.;, to sp,,.)
This feature would be expected to, and as we shall see,
does lead to a KPZ-like behavior. The I, growth mecha-
nism may be visualized to a continuum version of the
Eden growth model (in which growth occurs randomly at
the interface and the behavior is known to be in the KPZ
universality class [3]) with a redistribution of the deposit-
ed particles via surface diffusion. The I, growth mecha-
nism does not have these properties and, as we will show,
the effective growth rate is a function of the curvature at
the interface and is overall nonuniform.
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FIG. 1. Snapshot of interface, f =0, for dynamics with non-
conserved order parameter ind =1+1.

The necessity for conserved dynamics may be argued
by revisiting a model first introduced by Kim and Koster-
litz (KK) [4] to obtain the KPZ [3] exponents numerical-
ly. The KK model is a growth model of the restricted
solid-on-solid type where particles are added one at a
time on lattice sites with a constraint that neighboring
columns do not differ in height by more than 1 unit. KK
found that at long times the roughness width W scales [2]
with the lateral size L as W~ L* whereas at early times
t,W~th

In 1+1 dimensions, due to the restriction, any
configuration of the growing interface may be considered
to be made up of three kinds of basic segments (the inter-
face is assumed, here, to go from the left to the right): a
flat segment (denoted by 0), a downward step L (—1),
and an upward step I’ (+1). The growth dynamics of
KK is such that the numerical sum of the segments is a
locally conserved quantity.
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FIG. 2. Sequence of interfaces generated from Eq. (2) every
15 time units with I, growth mechanism and a=1 ind =1+1.
The location of the interface was determined by solving for

f=0. The third contour from the bottom has a hole at the
boundary, where periodic boundary conditions are applied.
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FIG. 3. Interface width as a function of time for a =1, I,
growth mechanism. Upper data correspond to d =1+1, and 0.30
the lower to d =2+ 1. Data are for lateral size 100 in d =1 and ) (b)
40X40ind =2+1. 3
A standard model with no conservation law (model 4) 0.251 ;
[6] has been used by Grossman, Guo, and Grant [5] as a , &
starting point for the derivation of the KPZ equation. In VT =
this case, the system is governed by the equation ff
1 &
af(r,t) JoF 0.20 &
2= =—-T——+7(r,t)
ot af ! &
. o ey, &
with L;’,gnm
= 2 4 2 0.154 . , . .
F=—Af"+Bf'+C(VNH " =hf, -0.50 -0.25 0.00 0.25 0.50
where 7 is an uncorrelated Gaussian noise and %, is a oVt
magnetic field responsible for the growth. We have (W)

found, by numerically solving the above equation, that
when the interface is significantly rough, it is not well
defined with islands of the growing component within a
sea of the other component (Fig. 1). These undesirable
features may be suppressed by decreasing the noise am-
plitude and the magnitude of the growth term A, but then
the interface is virtually flat and the roughness is essen-
tially zero.

The results of our numerical studies of the model are
summarized in Figs. 2—4. Figure 2 shows typical interfa-
cial profiles of the model with the I, growth mechanism
with @ =1. The interface is well defined and the topology

of the contour is richer than that obtained in a numerical
integration of the KPZ equation. Overhangs are
present—they occasionally merge leaving holes behind.
Such holes are filled up due to the growth mechanism and
do not play any role in further growth. Similar topologi-
cal properties can be observed using the I, growth term.
In all cases where overhangs were present, the highest
value of the interface was chosen in order to calculate the
measure of roughness. In practice, we began all calcula-
tions with an equilibrated f profile (in the absence of the
growth and noise terms) by imposing antiperiodic bound-
ary conditions in the growth direction z. This resulted in
the edges of the system, in the z direction, having the
values f = +1 and — 1 with a flat interface located in the
middle of the system. Periodic boundary conditions were

FIG. 4. (a) Log-log plot of width vs time for the I, growth
mechanism with a=1 in d =1+1; the lateral size is 100. (b)
Average value of (Vf)? vs curvature of interface
(—V-Vf/|Vf|), data are averages for 30 samples, all other pa-
rameters are the same as in (a).

imposed in the transverse directions. Typical values of
D, (the noise term) and C, (the growth term) and D, and
C, were of order 1. Smaller values of these parameters
lead to essentially flat interfaces while much larger values
produce an instability in the numerical integration of Eq.
(2). Our calculations were carried out with an integration
time step of 0.01 units—statistically similar results were
obtained with a time step reduced by a factor of 2. A
square grid with lattice constant 1 was used. An interpo-
lation scheme to locate the zeros of f, however, leads to a
resolution an order of magnitude finer than the lattice
constant. Figure 3 shows a calculation of the dynamical
exponent in d =1+1 and 2+1 for the I, growth mecha-
nism for @ =1. The best fits yield values of the dynamical
exponent 8 of 0.3410.02 and 0.24+0.03 ind =1+1 and
2+1, respectively (the KK estimates [4] for B are
0.332+0.005 and 0.2481+0.005) [7]. The estimate for the
exponent @ in d =1+1 is 0.511+0.03, the value being
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consistent with the expected value [3] of 1. The data are
averages over 100 systems in d =141 and 10 systems in
d=2+1.

Figure 4(a) shows a log,oW vs log,ot plot for the I,
growth mechanism (data are averages over 100 systems).
We estimate that the scaling behavior of the roughness
with lateral size is, within the statistical error, the same
as for the I, growth mechanism. « is equal 0.5310.03.
But the dynamical behavior is different. The exponent
is found to constantly increase from a value of 0.3 to 0.5.
To understand the origin of this behavior we study the
correlation between (Vf)? and the curvature of the inter-
face

vf
V£

(note that the V£ vector is directed toward the f =1 re-
gion). Figure 4(b) shows a plot of the average value of
[Vf|?, over the region of |f|<0.8, versus curvature,
showing that while for negative curvature the [Vf]? is
fairly constant, for positive curvatures it increases sharp-
ly with curvature. Since the growth rate per unit length

_v.

KEBLINSKI, MARITAN, TOIGO, KOPLIK, AND BANAVAR 49

of the interface of the I, mechanism is proportional to
[ ;"‘f"‘iV f|ds, one obtains nonuniform growth of the in-
min

terface that is higher in regions of positive curvature.
This is in contrast to the I; growth mechanism where the
growth rate is constant.

In summary, the model described by Eq. (3a) provides
a simple framework for describing the growth of inter-
faces having an arbitrary topology. Distinct universality
classes of dynamical behavior may be obtained as special
cases of the equations. A KPZ-type behavior is found
when the I, growth term is used. On the other hand,
when the other growth term is used, our numerical re-
sults suggest a new type of dynamical behavior.
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